Nitrogen Dynamics in High Density Vegetable Production Systems

Richard Smith, Michael Cahn and Tim Hartz
UC Cooperative Extension, Monterey County and UC Davis, Dept of Plant Sciences

Tricia Love, Barry Farrara, Laura Murphy, Tom Lockhart, Elizabeth Mosqueda and Fabian Galvan
Nitrogen Management of High-Density Leafy Vegetables

• Nitrogen use in vegetable production in the coastal production district is now being monitored by the Central Coast Regional Water Quality Control Board

• Growers are looking for practices to bring N application rates closer to crop N uptake
Acreage and Value of High-Density Vegetables in California

• Acreage of high density crops
 ▪ 27,976 acres – spinach
 ▪ 21,884 acres - spring mix
 ▪ 4,317 acres - cilantro
 ▪ 21,400 acres - baby lettuce

• Combined value* of $453,757,000

* Baby lettuce value not available
High-Density Vegetable Crops

- Eighty-inch wide beds present a particular challenge for managing nitrogen and water
- Crops are planted densely with 24 - 32 seedlines across the wide bed top using 2 to 4 million seed per acre
- The crops are typically fast maturing, shallow rooted and exclusively sprinkler irrigated
- These characteristics create difficulties for achieving high N-use efficiency
- Growers are under pressure to meet strict quality standards from buyers for these leafy vegetables
Objectives of this Study

- Document the rate of N uptake and total N uptake of spinach, baby lettuce, mizuna and cilantro
- Evaluate quantities of irrigation water applied to these crops over the course of the growth cycle
- Evaluate the rooting depth over the growing season
- Evaluate fertilizer additives such as urease and nitrification inhibitors with pre/at-planting fertilizer applications to improve N use efficiency
- Utilize the information gained on nitrogen uptake, water needs and rooting depth to refine the algorithms in the CropManage
Days to Harvest

- Cilantro: 41-53 days
- Baby Lettuce: 24-35 days
- Mizuna: 19-29 days
- Spinach: 26-37 days
Nitrogen Uptake

Spinach

- 6.0 lbs N/A/day

Cilantro

- 3.5 lbs N/A/day

Baby Lettuce

- 4.1 lbs N/A/day

Mizuna

- 5.9 lbs N/A/day
Biomass and Nitrogen Uptake

<table>
<thead>
<tr>
<th>Crop</th>
<th>Dry Biomass lbs/A</th>
<th>N total uptake lbs/A</th>
<th>N fertilizer lbs/A</th>
<th>N applied/uptake ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cilantro</td>
<td>2,054</td>
<td>104</td>
<td>208</td>
<td>2.0</td>
</tr>
<tr>
<td>B. lettuce</td>
<td>1,210</td>
<td>64</td>
<td>184</td>
<td>2.9</td>
</tr>
<tr>
<td>Mizuna</td>
<td>1,722</td>
<td>99</td>
<td>179</td>
<td>1.8</td>
</tr>
<tr>
<td>Spinach</td>
<td>2,197</td>
<td>128</td>
<td>180</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Nitrogen Uptake and N in Crop Residue after Harvest

<table>
<thead>
<tr>
<th>Crop</th>
<th>N total uptake lbs/A</th>
<th>N in residue lbs/A</th>
<th>% N uptake in residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cilantro</td>
<td>104</td>
<td>47</td>
<td>45</td>
</tr>
<tr>
<td>Baby lettuce</td>
<td>64</td>
<td>24</td>
<td>38</td>
</tr>
<tr>
<td>Mizuna</td>
<td>99</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Spinach</td>
<td>128</td>
<td>40</td>
<td>31</td>
</tr>
</tbody>
</table>
Baby lettuce residue
Mineralization of Crop Residue
most breakdown is complete in 4-6 weeks

Hartz, 2013
Available N from Vegetable Crop Residue after 8 Weeks

<table>
<thead>
<tr>
<th>Crop Residue</th>
<th>N content</th>
<th>N in crop residue</th>
<th>Net N mineralization after 8 weeks</th>
<th>Net N mineralization after 8 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percent</td>
<td>lbs N/A</td>
<td>Percent</td>
<td>lbs N/A</td>
</tr>
<tr>
<td>Spinach</td>
<td>6.2</td>
<td>40</td>
<td>82</td>
<td>33</td>
</tr>
<tr>
<td>Romaine</td>
<td>3.4</td>
<td>70</td>
<td>57</td>
<td>40</td>
</tr>
</tbody>
</table>

These crops residues mineralize so quickly that the quantity of N that they provide can best be assessed with a soil test.
Phosphorus and Potassium Uptake

<table>
<thead>
<tr>
<th>Crop</th>
<th>Percent P at harvest</th>
<th>P uptake lbs/A</th>
<th>Percent K at harvest</th>
<th>K uptake lbs/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cilantro</td>
<td>0.3</td>
<td>6.7</td>
<td>6.9</td>
<td>141</td>
</tr>
<tr>
<td>Baby lettuce</td>
<td>0.5</td>
<td>7.1</td>
<td>7.8</td>
<td>105</td>
</tr>
<tr>
<td>Mizuna</td>
<td>0.6</td>
<td>9.5</td>
<td>5.3</td>
<td>97</td>
</tr>
<tr>
<td>Spinach</td>
<td>0.7</td>
<td>15.0</td>
<td>9.3</td>
<td>203</td>
</tr>
</tbody>
</table>
Rooting Depth of Spinach

In the first 15 days of the crop cycle, the roots only reached to 10 inches.
Rooting Depth of Spinach

88% of all roots found in top 12” of soil at harvest
Nitrate Distribution in Spinach Beds After Harvest

Most Active Roots

zone of efficient crop N removal

nitrate leached past root zone

NO3-N (mg/kg soil) vs. Depth (in)
Cilantro roots grow at the same rate as spinach but reached deeper into the soil presumably because of the longer crop cycle (47 vs 33 days).
Water Use by High-Density Crops

<table>
<thead>
<tr>
<th>Crop</th>
<th>Applied water inches</th>
<th>Crop ET inches</th>
<th>Applied water/ETc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cilantro</td>
<td>5.8</td>
<td>3.7</td>
<td>156</td>
</tr>
<tr>
<td>Baby lettuce</td>
<td>12.5</td>
<td>4.3</td>
<td>283</td>
</tr>
<tr>
<td>Mizuna</td>
<td>4.1</td>
<td>3.1</td>
<td>148</td>
</tr>
<tr>
<td>Spinach</td>
<td>7.7</td>
<td>3.1</td>
<td>245</td>
</tr>
</tbody>
</table>
High-density 80-inch wide beds are exclusively sprinkler irrigated.

Uniformity of size and quality is critical for these machine-harvested crops.

Growers are careful to avoid sprinkler patterns.

This may increase water use on these crops.
Improving Nitrogen Use Efficiency

• Accounting for residual soil nitrogen
• Managing water to keep nitrate where most of the active roots occur
• Use of nitrogen technology
Effect of Residual Soil Nitrate on Spinach Yield

Initial Soil Nitrate-N = 5.8 ppm

Initial Soil Nitrate-N = 28.0 ppm
Shallow root system and high water use makes it difficult to keep a high percent of soil nitrate in the area of active roots.
Nitrification inhibitor:
Keeps ammonium from converting to nitrate for a brief period of time

4-12 inches area of active root system
Controlled Release: Urea encapsulated in a plastic prill. Urea is released to the area of active root system, 4-12 inches below the surface.
Nitrogen Technology Trial Update

• A total of 7 trials have been conducted over the past two years on spinach and baby lettuce

• All trials were conducted on commercial production fields using standard practices

• These trials are difficult on grower’s fields due to high levels of residual N in the soil and the common practice of applying N through the sprinkler irrigation system
Materials Tested

• Controlled release materials:
 ▪ Coated Urea – Duration
 ▪ Triazone - NSure

• Nitrification inhibitors:
 ▪ Nitrapyrin - Instinct
 ▪ DMPP - Novatec
 ▪ DCD – Super U
* Material sprayed over spread ammonium sulfate and then mulched into bed
2014 Soil Ammonium Levels

Ammonium-N ppm

AS + Nitrpyrin 120
UN232 + Nitrpyrin 120
Novatec 120
Duration ST 120
Super U 120
Amm Sulf 120
Amm Sulf 200
Untreated

5-May
13-May
19-May
27-May
3-Jun
9-Jun

Soil Ammonium Levels
Yield of Romaine
Drip Applied UN32 with Fertilizer Additives
Spence, 2014

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Yield (lbs N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>0</td>
</tr>
<tr>
<td>Standard 155</td>
<td>155</td>
</tr>
<tr>
<td>Moderate 105</td>
<td>105</td>
</tr>
<tr>
<td>Nitrapyrin 105</td>
<td>105</td>
</tr>
<tr>
<td>Nsure 105</td>
<td>105</td>
</tr>
<tr>
<td>Novatec 105 lbs N</td>
<td>105</td>
</tr>
</tbody>
</table>
Fertilizer Trials Summary

• These trials have provided an opportunity to test established products and new materials that are not presently used commercially

• We have also had a chance to test methods of application of some of the materials

• It has been difficult to get significant differences in small plot trials in commercial conditions

• Under certain conditions, fertilizer technologies have shown to be useful in giving a boost to a low amount of nitrogen equal to the standard amount
Algorithms Developed for CropManage

- Nitrogen uptake curves
 - Used to make nitrogen fertilizer recommendations
- Crop canopy development
 - Used to calculate crop coefficient at all stages of the crop cycle
 - Used to estimate irrigation requirements
- Root development
Thank You for Your Attention